How to connect to in-memory data in a Spark dataframe
This guide will help you connect to your data in an in-memory dataframe using Spark. This will allow you to ValidateThe act of applying an Expectation Suite to a Batch. and explore your data.
Prerequisites: This how-to guide assumes you have:
- Completed the Getting Started Tutorial
- Have a working installation of Great Expectations
- Have access to an in-memory Spark dataframe
Steps
1. Choose how to run the code in this guide
Get an environment to run the code in this guide. Please choose an option below.
- CLI + filesystem
- No CLI + filesystem
- No CLI + no filesystem
If you use the Great Expectations CLICommand Line Interface, run this command to automatically generate a pre-configured Jupyter Notebook. Then you can follow along in the YAML-based workflow below:
great_expectations datasource new
If you use Great Expectations in an environment that has filesystem access, and prefer not to use the CLICommand Line Interface, run the code in this guide in a notebook or other Python script.
If you use Great Expectations in an environment that has no filesystem (such as Databricks or AWS EMR), run the code in this guide in that system's preferred way.
2. Instantiate your project's DataContext
Import these necessary packages and modules.
from ruamel import yaml
import great_expectations as ge
from great_expectations.core.batch import BatchRequest, RuntimeBatchRequest
from great_expectations.data_context import BaseDataContext
from great_expectations.data_context.types.base import (
DataContextConfig,
InMemoryStoreBackendDefaults,
)
Use one of the guides below based on your deployment:
3. Configure your Datasource
Using this example configuration add in the path to a directory that contains some of your data:
- YAML
- Python
datasource_yaml = f"""
name: my_spark_dataframe
class_name: Datasource
execution_engine:
class_name: SparkDFExecutionEngine
data_connectors:
default_runtime_data_connector_name:
class_name: RuntimeDataConnector
batch_identifiers:
- batch_id
"""
Run this code to test your configuration.
context.test_yaml_config(datasource_yaml)
datasource_config = {
"name": "my_spark_dataframe",
"class_name": "Datasource",
"execution_engine": {"class_name": "SparkDFExecutionEngine"},
"data_connectors": {
"default_runtime_data_connector_name": {
"class_name": "RuntimeDataConnector",
"batch_identifiers": ["batch_id"],
}
},
}
Run this code to test your configuration.
context.test_yaml_config(yaml.dump(datasource_config))
Note: Since the Datasource does not have data passed-in until later, the output will show that no data_asset_names
are currently available. This is to be expected.
4. Save the Datasource configuration to your DataContext
Save the configuration into your DataContext
by using the add_datasource()
function.
- YAML
- Python
context.add_datasource(**yaml.load(datasource_yaml))
context.add_datasource(**datasource_config)
5. Test your new Datasource
Verify your new DatasourceProvides a standard API for accessing and interacting with data from a wide variety of source systems. by loading data from it into a Validator
using a BatchRequest
.
Add the variable containing your dataframe (df
in this example) to the batch_data
key under runtime_parameters
in your BatchRequest
.
batch_request = RuntimeBatchRequest(
datasource_name="my_spark_dataframe",
data_connector_name="default_runtime_data_connector_name",
data_asset_name="<YOUR_MEANGINGFUL_NAME>", # This can be anything that identifies this data_asset for you
batch_identifiers={"batch_id": "default_identifier"},
runtime_parameters={"batch_data": df}, # Your dataframe goes here
)
data = [
{"a": 1, "b": 2, "c": 3},
{"a": 4, "b": 5, "c": 6},
{"a": 7, "b": 8, "c": 9},
]
Then load data into the Validator
.
context.create_expectation_suite(
expectation_suite_name="test_suite", overwrite_existing=True
)
validator = context.get_validator(
batch_request=batch_request, expectation_suite_name="test_suite"
)
print(validator.head())
🚀🚀 Congratulations! 🚀🚀 You successfully connected Great Expectations with your data.
Additional Notes
To view the full scripts used in this page, see them on GitHub:
Next Steps
Now that you've connected to your data, you'll want to work on these core skills: